Abstract
To date, apart from alcohol, few alternative fuels have been investigated for the operation of port fuel injection (PFI) engines. The current study is examining the suitability of a ternary blend of lemon peel oil (LPO), ethanol, and gasoline as a drop in fuel for traditional gasoline engines. Unique combinations of LPO blends with a calorific value exceeding 40 MJ/kg and stoichiometric air to fuel ratio exceeding 14 are tested on a PFI equipped single-cylinder Kirloskar engine. In this study, two binary blends (G60L40, G80E20) and two ternary blends (G60E20L20, G40E20L40) are prepared on a volume basis and investigated for combustion, performance, and emission characteristics. Combustion stability based exhaust gas recirculation (EGR) rate of 10% is proposed for the ternary blend (G40E20L40). The experimental results showed that the thermodynamic performance of ternary blends is similar to baseline gasoline with a 60% reduction in CO and a 15% reduction in NOx with 10% EGR. Biofuel blends exhibit higher in-cylinder pressure than gasoline due to the higher laminar flame velocities of LPO and ethanol. The ternary G40E20L40 blend with 10% EGR at 3.91 bar BMEP produces higher brake thermal efficiency (BTE) and marginally higher brake specific fuel consumption (BSFC) indicating an insignificant effect on vehicle range on a full tank and good alternative that utilizes 60% renewable fuel with gasoline without any changes to the PFI engine and simultaneously reaping the benefits of significantly improved emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.