Abstract
In the study, collagen and aloe vera were grafted onto silk fibroin with two different methods, and 3D-microporous scaffolds (1F5C4A1 and 2F5C4A1) were formed by lyophilization. Three osteogenic cultures were started by seeding rat bone marrow mesenchymal stem cells (MSCs) and pre-induced MSC (osteoblast (OB)) on biopolymeric scaffolds. The osteogenic medium was enriched with 10% (v/v) simulated body fluid (SBF) to promote mineralization and osteogenic differentiation in one of the MSC cultures and the OB culture. X-ray diffraction (XRD), scanning electron microscopy (SEM), scanning electron microscopy- energy dispersive spectrum (SEM-EDS) analyses on cellular samples and histochemical (alizarin red, safranin-O, alcian blue) and immunohistochemical (anti-collagen-1, anti-osteocalcin, anti-osteopontin) staining showed that bone-like mineralization was occurred by both chemically and cellular activity. In addition, pre-osteogenic induction of MSCs in 2D-cultured was found to promote osteogenesis more rapidly when started 3D-cultured. These results indicated that enrichment of the cell culture medium with SBF is sufficient for in vitro mineralization rather than using high concentrations of SBF. The findings showed that OB cells on the 2F5C4A1 scaffold obtained the best osteogenic activity. Still, other culture media with 10% SBF content could be used for bone tissue engineering under osteogenic induction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.