Abstract

In this paper, based on a weighted projection of the user-object bipartite network, we study the effects of user tastes on the mass-diffusion-based personalized recommendation algorithm, where a user's tastes or interests are defined by the average degree of the objects he has collected. We argue that the initial recommendation power located on the objects should be determined by both of their degree and the user's tastes. By introducing a tunable parameter, the user taste effects on the configuration of initial recommendation power distribution are investigated. The numerical results indicate that the presented algorithm could improve the accuracy, measured by the average ranking score. More importantly, we find that when the data is sparse, the algorithm should give more recommendation power to the objects whose degrees are close to the user's tastes, while when the data becomes dense, it should assign more power on the objects whose degrees are significantly different from user's tastes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.