Abstract

Diastolic dysfunction occurs in patients with chronic renal failure. Moreover, serum from uremic patients contains one or more inhibitors of the plasmalemmal Na,K-ATPase (sodium pump). We hypothesized that a circulating substance present in uremic sera contributes to both sodium pump inhibition and diastolic dysfunction. Serum samples were obtained from six patients with chronic renal failure and diastolic dysfunction. Their serum samples caused marked inhibition of Na,K-ATPase purified from dog kidney at all concentrations studied (all P < 0.01) and also impaired ouabain-sensitive rubidium uptake by myocytes isolated from Sprague-Dawley rats (P < 0.01). These cardiac myocytes were studied for their contractile function with video-edge detection and calcium metabolism with indo-1 fluorescence spectroscopy after exposure to these uremic sera. These uremic sera caused increases in myocyte fractional shortening (P < 0.01) as well as an increase in the time constant of relengthening (P < 0.01). Examining the calcium transient, the time constant for calcium recovery was also increased (P < 0.01). Exposure of these cells to sera from age- and sex-matched healthy subjects did not result in significant changes in contraction or calcium cycling. Extracts of uremic serum samples inhibited isolated Na,K-ATPase whereas extracts of normal serum samples did not. The effect of uremic serum extracts on contractile function and calcium cycling were quite similar to that of intact serum or the addition of ouabain. Co-incubation of uremic serum extract with an antibody fragment directed against digoxin markedly attenuated the inhibition of Na,K-ATPase activity and completely prevented any effects on calcium cycling or contractile function. These data show that one or more substances are present in uremic sera that acutely cause increased force of contraction and impaired recovery of cardiac myocyte calcium concentration as well as impaired relaxation. As these effects are similar to that seen with ouabain and can be prevented by co-incubation with an antibody fragment to digitalis, which also attenuates the sodium pump inhibitory effect, we suggest that this (these) substance(s) circulating in uremic sera and inhibiting the sodium pump also causes the acute diastolic dysfunction seen in our system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.