Abstract
In modern low pressure turbines the efforts to increase aerodynamic blade loading by increasing blade pitch and optimizing midspan performance in order to reduce weight and complexity can produce increased losses in the endwall region. Airfoils of high flow turning and high pressure gradients between the blades generate strong secondary flows which impair the global aerodynamic performance of the blades. In addition, the unsteady incoming wakes take influence on transition phenomena on the blade surfaces and the inlet boundary layer, and consequently affect the development and the evolution of the secondary flows. In this paper, the T106 cascade is used to identify the effect of unsteady wakes on the development of secondary flows in a turbine cascade. Numerical and experimental results are compared at different flux coefficients and Strouhal numbers, the relative differences and similarities are analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.