Abstract

An experimental study has been conducted to investigate the heat-transfer characteristics of blade tips and shrouds with and without unsteady wakes. Depending on the presence of unsteady wakes, the local heat/mass-transfer coefficients of the tip and shroud were measured using the naphthalene sublimation method. Wakes from unsteady blades were modeled as wakes generated from moving cylindrical rod bundles. Test conditions were set to the Reynolds number of 100,000, based on an inlet velocity of 11.4 m/s and the axial chord length. The Strouhal number was varied from 0 to 0.22. For St = 0, high heat/mass-transfer coefficients appeared in regions where various flow patterns, such as flow reattachment, swirling flow, and vortexes, occurred. For St = 0.22, the heat/mass-transfer distributions of the tip and shroud were changed due to the unsteady wakes. Unsteady wakes made high turbulence intensity of leakage flow and flow patterns such as flow reattachment, swirling flow, and tip leakage vortex in the tip and shroud were changed and dispersed. There were also variations in the pitch-wise averaged Sherwood number of the blade tip and shroud on the presence of the unsteady wakes due to vortex shedding and dispersed flow patterns. Thus, considering the effects of unsteady wakes on the heat transfer of the blade tip and shroud, proper cooling designs for blade tips and shrouds should be investigated and adopted for effective cooling of gas turbine blades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.