Abstract

Two kinds of InGaN-based light-emitting diodes (LEDs) having different electron concentrations in the n-GaN injection layer are investigated in order to understand the effects of unbalanced carrier injection on LED performance characteristics. Electrical and optical characteristics such as capacitance–voltage, current–voltage, external quantum efficiency, and electroluminescence spectrum are compared and analyzed. It is shown that the unbalanced carrier distribution in multiple quantum wells affects the forward operating voltage since a large disparity of injection rate between electrons and holes can induce a small effective active volume, thus leading to the severe overflow of electrons to the p-(Al)GaN layer in the LED devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.