Abstract

To understand the effect of ultraviolet (UV)-B irradiation on the antioxidant capacity and growth of lettuce (Lactuca sativa), we subjected lettuce plants to UV-B irradiation (15.55 kJ m−2 d−1) for 7 days and measured yield, photosynthetic performance, hydrogen peroxide (H2O2), reduced glutathione (GSH), and ascorbic acid (AsA) contents, and the enzyme activity and expression of genes involving AsA recycling. UV-B exposure did not significantly decrease the fresh/dry weight of the lettuce shoots. The net photosynthesis rate, internal CO2 concentration, transpiration rate, and stomatal conductance decreased during the first 4 days of irradiation and light but recovered at day 7. In UV-B-treated plants, the levels of AsA, GSH, and H2O2 increased significantly and simultaneously, with a positive correlation found between H2O2 and AsA or GSH levels. UV-B exposure upregulated the expression level of most genes encoding the enzymes involving AsA recycling but downregulated the associated enzymatic activities. The increase of AsA content in UV-B-exposed lettuce might contribute to the AsA–GSH cycle, leading to downregulation of ascorbate oxidase (AO) enzymatic activity and gene expression. UV-B irradiation had a greater impact on metabolite levels than time of UV-B treatment. These results suggest that AsA homeostasis in UV-B-treated lettuce is regulated through a feedback loop between the expression and activity of enzymes associated with AsA recycling. Short-term UV-B supplementation (24 h) could be a promising approach to enhance AsA content in lettuce.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call