Abstract

The continuous increase in global temperature and ultraviolet radiation (UVR) causes profound impacts on the growth and physiology of photosynthetic microorganisms. The hot-spring cyanobacteria have a wide range of mitigation mechanisms to cope up against current unsustainable environmental conditions. In the present investigation, we have explored the indispensable mitigation strategies of an isolated hot-spring cyanobacterium Nostoc sp. strain VKB02 under simulated ultraviolet (UV-A, UV-B) and photosynthetically active radiation (PAR). The adaptive morphological changes were more significantly observed under PAB (PAR, UV-A, and UV-B) exposure as compared to P and PA (PAR and UV-A) irradiations. PAB exposure also exhibited a marked decline in pigment composition and photosynthetic efficiency by multi-fold increment of free radicals. To counteract the oxidative stress, enzymatic and non-enzymatic antioxidants defense were significantly enhanced many folds under PAB exposure as compared to the control. In addition, the cyanobacterium has also produced shinorine as a strong free radicals scavenger and excellent UV absorber for effective photoprotection against UV radiation. Therefore, the hot-spring cyanobacterium Nostoc sp. strain VKB02 has unique defense strategies for survival under prolonged lethal UVR conditions. This study will help in the understanding of environment-induced defense strategies and production of highly value-added green photo-protectants for commercial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call