Abstract

The effects of the homogenization process on the structures and dielectric properties of pure and Nb-doped BaTiO3 ceramics have been investigated using an ultrasonic homogenization and conventional mechanical methods. The reagents were homogenized using an ultrasonic processor with high-intensity ultrasonic waves and using a compact mixer-shaker. The components and crystal types of the powders were determined by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. The complex permittivity (ε′, ε″) and AC conductivity (σ′) of the samples were analyzed in a wide frequency range of 20Hz to 2MHz at room temperature. The structures and dielectric properties of pure and Nb-doped BaTiO3 ceramics strongly depend on the homogenization process in a solid-state reaction method. Using an ultrasonic processor with high-intensity ultrasonic waves based on acoustic cavitation phenomena can make a significant improvement in producing high-purity BaTiO3 ceramics without carbonate impurities with a small dielectric loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call