Abstract

The influence of organic solvents on the structural integrity and properties of activated kaolinite were compared and analyzed via characterization techniques and molecular dynamics (MD) simulation. The results revealed that the organic intercalators can be easily inserted into the interlayer spaces of activated kaolinite within a short time of the wet ball milling. The DMSO intercalated kaolinites maintained structural integrity due to the high intercalation rate and the excellent buffering effect against the crushing force of milling during the delamination/exfoliation process. The delaminated layers of the DMSO-kaolinite complex exhibited a high specific surface area of 99.12 m2/g and a low average thickness of 35.21 nm. The calculated elastic properties of the organo-kaolinite complex manifested the intercalation of DMSO into a kaolinite interlayer, which could improve the compressibility and structural integrity of kaolinite nanosheets. The DMSO-kaolinite complex was easier to peel off when compared to the other organic intercalators due to its more intercalated molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.