Abstract
Insulin-induced stimulation of muscle glucose uptake (MGU) is impaired in people with type 2 diabetes. To determine whether insulin-induced stimulation of splanchnic glucose uptake (SGU) is also impaired, we simultaneously measured leg glucose uptake (LGU) and SGU in 14 nondiabetic subjects and 16 subjects with type 2 diabetes using a combined organ catheterization-tracer infusion technique. Glucose was clamped at approximately 9.3 mmol/l, while insulin concentrations were maintained at approximately 72 pmol/l (low) and approximately 150 pmol/l (high) for 3 h each. Endogenous hormone secretion was inhibited with somatostatin. Total body glucose disappearance was lower (P < 0.01) and glucose production higher (P < 0.01) during both insulin infusions in the diabetic compared with the nondiabetic subjects, indicating insulin resistance. Splanchnic glucose production was higher (P < 0.05) in the diabetic subjects during the low but not the high insulin infusion. SGU was slightly lower in the diabetic than in the nondiabetic subjects during the low insulin infusion and 50-60% lower (P < 0.05) during the high insulin infusion. LGU (P < 0.001), but not SGU, was inversely correlated with the degree of visceral adiposity. The contribution of the indirect pathway to hepatic glycogen synthesis did not differ in the diabetic and nondiabetic subjects. In contrast, both flux through the UDP-glucose pool (P < 0.05) and the contribution of the direct pathway to glycogen synthesis (P < 0.01) were lower in the diabetic than in the nondiabetic subjects, indicating decreased uptake and/or phosphorylation of extracellular glucose. On the other hand, glycogenolysis was equally suppressed in both groups. In summary, type 2 diabetes impairs the ability of insulin to stimulate both MGU and SGU. The defect appears to reside at a proximal (e.g., glucokinase) metabolic step and is not related to the degree of visceral adiposity. These data suggest that impaired hepatic glucose uptake as well as MGU contribute to hyperglycemia in people with type 2 diabetes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.