Abstract
The use of thermally modified timber (TMT) in outdoor applications is well established, but its performance against the stresses of outdoor conditions is not comprehensively understood. This study investigates the changes in density, surface chemical composition, color, equilibrium moisture content (EMC), checking, hardness, and cupping of thermally modified boards of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) H. Karst.), and European ash (Fraxinus excelsior L.) during a two-year weather exposure test in Eastern Finland. Unmodified pine, spruce, and ash and copper salt impregnated pine boards were used as controls. The results show that a two-year weather exposure period causes degradation of hydrophobic lignin, and the leaching of the degraded compounds changed the color, increased the EMC, and decreased the hardness of specimens. Although the EMC of TMT specimens was lower compared with unmodified and impregnated ones during weathering, the changes were more obvious in TMT than in the controls. More checks occurred in the TMT specimens than in unmodified ones after the exposure. On the other hand, the TMT specimens had a lower degree of cupping. These findings also indicate that an increase in modification temperature induces more checks but improves the durability of all studied species by reducing the chemical degradation, color change, cupping, and hygroscopicity during weather exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.