Abstract

A standard two-step dilute sulfuric acid pretreatment was performed on Loblolly pine to enhance the overall efficiency of enzymatic deconstruction of woody biomass to monomeric sugars. The structure of milled wood lignin and cellulose isolated from the untreated and acid-treated biomass was studied in detail. Solid-state 13C NMR spectroscopy coupled with line shape analyses has been employed to elucidate cellulose crystallinity and ultrastructure. The results indicate an increase in the degree of crystallinity and reduced relative proportion of less ordered cellulose allomorphs following the acid pretreatment. This increase was attributed to a preferential degradation of amorphous cellulose and less ordered crystalline forms during the high temperature pretreatment. Milled wood lignin structural elucidation by quantitative 13C and 31P NMR reveals an increase in the degree of condensation of lignin due to the pretreatment. The increase in degree of condensation is accompanied by a decrease in β-O-4 linkages which were fragmented and recondensed during the high temperature acid-catalyzed reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.