Abstract
ABSTRACTSiderophore-producing rhizobacteria beneficially affect plant growth by providing available iron to plants. In this study, bacteria were isolated from the rhizosphere of canola (Brassica napus L.) plants grown in the central fields in Iran, for the presence of siderophore-producing bacteria. A total of 45 distinct isolates were found to produce siderophore using qualitative chrome azurol sulfonate (CAS)-agar assay. Of them, ten isolates, based on the highest halo diameter/colony diameter ratios, were selected to quantify the rate of siderophore production using CAS-liquid assay. A variety of biochemical assays was used to determine the type(s) of siderophores produced by each of the ten isolates. The best isolates, based on production of the highest rates of either hydroxamates or carboxylates, were identified and used in further studies. Based on 16S ribosomal ribonucleic acid (rRNA) sequence analysis and a variety of phenotypic properties, the isolates were identified as Micrococcus yunnanensis YIM 65004 (T) and Stenotrophomonas chelatiphaga LPM-5 (T). We also studied the plant growth-promoting effect of the most promising isolates (YIM 65004 and LPM-5) on canola and maize plants under greenhouse conditions. The results of this study showed that M. yunnanensis and S. chelatiphaga increased gain weight and iron (Fe) content of roots and shoots significantly, in comparison with control, indicating beneficial effects of these rhizobacteria on plant growth and development. This study reports M. yunnanensis and S. chelatiphaga, as new records for Iran. The latter is reported for the first time from plant (canola) rhizosphere. Besides, the ability of both M. yunnanensis and S. chelatiphaga to produce siderophores is documented for the first time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.