Abstract

Heather (Calluna vulgaris) and broom (Cytisus scoparius), originally from Europe, are the main invasive plants on New Zealand’s North Island Central Plateau, where they threaten native flora and fauna. Given the strong link between arthropod communities and plants, we explored the impact of these invasive weeds on the diversity and composition of associated arthropod assemblages in this area. The arthropods in heather-invaded areas, broom-invaded areas, and areas dominated by the native species mānuka (Leptospermum scoparium) and Dracohyllum (Dracophyllum subulatum) were collected and identified to order. During summer and autumn, arthropods were collected using beating trays, flight intercept traps and pitfall traps. Diversity indices (Richness, Shannon’s index and Simpson’s index) were calculated at the order level, and permutational multivariate analysis (PERMANOVA) was used to explore differences in order-level community composition. Our results show a significant variation in community composition for all trapping methods in both seasons, whereas invasive plants did not profoundly impact arthropod order richness. The presence of broom increased arthropod abundance, while heather was linked to a reduction. Under all possible plant pairings between heather, broom, mānuka, and Dracophylum, the impact of neighbouring plant identity on arthropod community composition was further explored for the samples collected using beating trays. The results suggest that during plant invasion, arthropod communities are affected by neighbouring plant identity and that impacts vary between arthropod sampling methods and seasons.

Highlights

  • Increased human migration, trade, and climate change are significant factors contributing to the spread of plants beyond their natural boundaries [1,2,3]

  • Several studies report a significant decrease in arthropod diversity and abundance in response to plant invasions, as reviewed by Litt and colleagues [15], and others suggest that arthropod assemblages could be restored when invasive plants are eradicated [16,17,18]

  • Our results only partially support the often-reported observation that arthropod abundance and diversity are decreased in habitats dominated by exotic weeds [15], but rather indicate that the responses of arthropod communities depend on the identity of the invasive plant

Read more

Summary

Introduction

Trade, and climate change are significant factors contributing to the spread of plants beyond their natural boundaries [1,2,3]. A variety of factors contribute to the success of invasive plants in their new environment, including biogeographic affinity between their native and invasive range, rapid and high reproductive outputs [4], rapid growth and high-stress tolerance [5,6], lack of specialist natural enemies [7], high phenotypic plasticity [8,9,10], the ability to release phytotoxic compounds into the environment [11], and the potential to rob native plants of their mutualists [12]. It is important to explore changes in arthropod community composition in different invasion scenarios through the seasons, using a range of sampling techniques to avoid faulty generalisation

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.