Abstract

The objective of this research was to investigate the effect of bulking agents on the maturity and gaseous emissions of composting kitchen waste. The composing experiments were carried out by selected core bacterial agents and universal bacterial agents for 20 days. The results demonstrated that the addition of core microbial agents effectively controlled the emission of typical odor-producing compounds. The addition of core and universal bacterial agents drastically reduced NH3 emissions by 94% and 74%, and decreased H2S emissions by 78% and 27%. The application of core microbial agents during composting elevated the peak temperature to 65 °C and in terms of efficient temperature evolution (>55 °C for 8 consecutive days). The organic matter degradation decreased by 65% from the initial values for core microbial agents were added, while for the other treatments the reduction was slight. Adding core microbial agents to kitchen waste produced mature compost with a higher germination index (GI) 112%, while other treatments did not fully mature and had a GI of <70%. Microbial analysis demonstrated that the core microbial agents in composting increased the relative abundances of Weissella, Ignatzschineria, and Bacteroides. Network and redundancy analysis (RDA) revealed that the core microbial agents enhanced the relationship between bacteria and the eight indicators (p < 0.01), thereby improving the bio transformation of compounds during composting. Overall, these results suggest that the careful selection of appropriate inoculation microorganisms is crucial for improved biological transformation and nutrient content composting efficacy of kitchen waste.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call