Abstract

Drought is a limiting factor for crop production, especially in arid and semi-arid climates. In this study, Sorghum bicolor plants were inoculated, or not, with Rhizophagus irregularis, an arbuscular mycorrhizal (AM) strain typical for temperate climates, or Rhizophagus arabicus, a strain endemic to hyper-arid ecosystems. Plants were grown under well-watered or drought conditions in compartmented microcosms. Transpiration rates, plant growth, and nutrient uptake (using 15N as a tracer) were determined to assess the impact of drought stress on sorghum plants in AM symbiosis. Although AM colonization did not affect the bulk biomass of host plants, R. arabicus improved their transpiration efficiency and drought tolerance more than R. irregularis. Moreover, R. arabicus was able to extract more 15N from the soil under both water regimes, and AM-driven enhancement of the nitrogen and phosphorus content of sorghum, especially when water was limiting, was greater for R. arabicus-inoculated plants than for R. irregularis-inoculated plants. Our work demonstrates close links between AM hyphal phosphorus and nitrogen transport and uptake by AM plants for both AM fungal species. It also underscores that, under the drought stress conditions we applied, R. arabicus transfers significantly more nitrogen to sorghum than R. irregularis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.