Abstract

Folding of beta-hairpin structures of synthetic peptides has been simulated using the molecular dynamics method with a solvent-referenced potential. Two similar sequences, Ac-MQIFVKS(D)PGKTITLKV-NH(2) and Ac-MQIFVKS(L)PGKTITLKV-NH(2), derived from the N-terminal beta-hairpin of ubiquitin, were used to study the effects of turn residues in beta-hairpin folding. The simulations were carried out for 80 ns at 297 K. With extended initial conformation, the (D)P-containing peptide folded into a stable 2:2 beta-hairpin conformation with a type II' beta-turn at (D)PG. The overall beta-hairpin ratio, calculated by the DSSP algorithm, was 32.6%. With randomly generated initial conformations, the peptide also formed the stable 2:2 beta-hairpin conformation. The interactions among the side chains in the 2:2 beta-hairpin were almost identical to those in the native protein. These interactions reduced the solvation energy upon folding and stabilized the beta-hairpin conformation. Without the solvent effect, the peptide did not fold into stable beta-hairpin structures. The solvent effect is crucial for the formation of the beta-hairpin conformation. The effect of the temperature has also been studied. The (L)P-containing peptide did not fold into a stable beta-hairpin conformation and had a much lower beta-hairpin ratio (16.6%). The( L)P-containing peptide has similar favorable side-chain interactions, but the turn formed by (L)PG does not connect well with the right-handed twist of the beta-strands. For comparison, the isolated N-terminal peptide of ubiquitin, Ac-MQIFVKTLTGKTITLEV-NH(2), was also simulated and its beta-hairpin ratio was low, indicating that the beta-hairpin in the native structure is stabilized by the interaction with the protein environment. These simulation results agreed qualitatively with the available experimental findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call