Abstract

Experiments were conducted to determine the effects of turbulence on the temperature of a heated air jet required to ignite a counterflowing cold hydrogen/nitrogen jet. In contrast to pseudo-turbulent flows, where turbulence was generated by only a perforated plate on the fuel side, resulting in little effect on ignition in a hydrogen system, fully turbulent flows with perforated plates on both sides of the flow were found to produce noticeable effects. The difference was attributed to the fact that in fully turbulent flows, a significantly larger range of turbulent eddies extend to smaller scales than in pseudo-turbulent flows. At atmospheric pressure, the lowest turbulence intensity studied had ignition temperatures notably lower than laminar ones, while further increases in turbulence intensity resulted in rising ignition temperatures. As a result, optimal conditions for nonpremixed hydrogen ignition exist in weakly turbulent flows where the ignition temperature is lower than can be obtained in other laminar or turbulent flows at the same pressure. Similar trends were seen for all fuel concentrations and at all pressures in the second ignition limit (below 3–4 atm). At higher pressures, turbulent flows caused the ignition temperatures to continue to follow the second limit resulting in ignition temperatures higher than the laminar values. The extension of the second limit ends at the highest pressures (7 to 8 atm) where evidence of third limit behavior appears. Three mechanisms were noted to explain the experimental results. First, turbulent eddies similar in size to the ignition kernel can promote discrete mixing of otherwise isolated pockets of gas. Second, this mixing can promote HO 2 chain branching pathways, which can account for the enhanced ignition noted in the second limit where reaction is governed by crossover temperature chemistry. Third, turbulence limits the excursion times available for reaction, inordinately affecting the slower HO 2 reactions. This is responsible for the increasing ignition temperature with turbulence intensity and pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.