Abstract

Uveitis, or intraocular inflammation, is a potentially blinding condition that mostly affects the working-age population. The cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β, play a role in the pathogenesis of non-infectious uveitis and have been linked to the breakdown of the inner blood-retinal barrier, composed mainly of retinal endothelial cells, leading to macular oedema and vascular leakage. However, the effects of TNF-α and IL-1β on human retinal endothelial function are not fully understood. In this work, we investigated the impact of TNF-α and IL-1β on several aspects of human retinal endothelial cell biology. Through a real-time biosensor, the impact of TNF-α and IL-1β on formation of a retinal endothelial cell barrier was analyzed. Changes in junctional components were assessed via RT-qPCR and immunolabelling. Cell survival, necrosis and apoptosis were appraised via cell proliferation and flow cytometric studies. Tumor necrosis factor-α and IL-1β impaired the electrical resistance of the retinal endothelial cell barrier, while the addition of a potentially barrier-impairing cytokine, IL-6, did not enhance the effect of TNF-α and IL-1β. Level of the gene transcript encoding zonula occludens (ZO)-1 was diminished, while ZO-1 protein configuration was changed by TNF-α and IL-1β. Both cytokines affected human retinal endothelial cell proliferation and viability, while only TNF-α increased rates of necrosis. These results indicate that TNF-α and IL-1β are important drivers of retinal endothelial dysfunction in non-infectious uveitis, suggesting that targeting these cytokines is critical when treating complications of uveitis, such as macular oedema and vascular leakage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.