Abstract

Piano performance involves several levels of motor abundancy. Identification of kinematic strategies that enhance performance and reduce risks of practice-related musculoskeletal disorders (PRMD) represents an important research topic since more than half of professional pianists might suffer from PRMD during their career. Studies in biomechanics have highlighted the benefits of using proximal upper-limb joints to reduce the load on distal segments by effectively creating velocity and force at the finger–key interaction. If scientific research has documented postural and expressive features of pianists’ trunk motion, there is currently a lack of scientific evidence assessing the role of trunk motion in sound production and in injury prevention. We address this gap by integrating motion of the pelvis and thorax in the analysis of both upper-limb linear velocities and joint angular contribution to endpoint velocities. Specifically, this study aims to assess kinematic features of different types of touch and articulation and the impact of trunk motion on these features. Twelve pianists performed repetitive loud and slow-paced keystrokes. They were asked to vary (i) body implication (use of trunk and upper-limb motion or use of only upper-limb motion), (ii) touch (struck touch, initiating the attack with the fingertip at a certain distance from the key surface, or pressed touch, initiating the attack with the fingertip in contact with the key surface), and (iii) articulation (staccato, short finger–key contact time, or tenuto, sustained finger–key contact time). Data were collected using a 3D motion capture system and a sound recording device. Results show that body implication, touch, and articulation modified kinematic features of loud keystrokes, which exhibited not only downward but also important forward segmental velocities (particularly in pressed touch and staccato articulation). Pelvic anterior rotation had a prominent role in the production of loud tones as it effectively contributed to creating forward linear velocities at the upper limb. The reported findings have implications for the performance, teaching, and research domains since they provide evidence of how pianists’ trunk motion can actively contribute to the sound production and might not only be associated with either postural or expressive features.

Highlights

  • Piano performance involves several levels of motor abundancy (Latash, 2012)

  • Differences on sound pressure level (SPL) values might be more related to distinct biomechanical features of trunk/upper-limb, of struck/pressed, and of staccato/tenuto conditions than to the pianists’ capacity to produce perceivable equivalent loud tones while using different types of touch, articulation, and body implication strategies

  • Pressed touch produced greater upward and forward velocities respectively before and after the attack. It seems that pianists, in the case of pressed keystrokes, compensated the fingertip’s virtually null motion during the attack-swing phase by creating (i) upward velocities of proximal upper-limb segments to anticipate the attack and (ii) faster metacarpophalangeal joint (MCPJ), wrist, and elbow forward accelerations from the beginning of the attack phase. These results suggest that struck touch and pressed touch imply two distinct multi-joint movement organizations during the attack phase, as shown by Furuya et al (2010), and during the attack-swing and follow-through phases

Read more

Summary

Introduction

Piano performance involves several levels of motor abundancy (Latash, 2012). Kinematic abundancy allows pianists to produce similar piano tones through an unlimited number of spatiotemporal motion profile possibilities across all joints of the kinematic chain. Kinetic, and physiological features of athletes’ and workers’ trunk motion have been addressed in studies on sports and on repetitive tasks in either standing (e.g., Wang et al, 2010; Reid et al, 2013; Côté, 2014) or sitting (e.g., Begon et al, 2010; Cavedon et al, 2014) positions Overall, these studies suggest that trunk motion can actively contribute to the generation of velocity and force at the distal end of the kinematic chain. A similar rationale might be applied to piano performance, as it is possible to hypothesize that the pelvis and the thorax could have a relevant impact on upper-limb segments’ velocities and on force generation at the finger–key interaction This idea has been advanced in alternative approaches to piano performance such as the approach developed and thought at Université de Montréal, which encourages a systematic and active implication of specific pelvic and thoracic movements while performing (Verdugo, 2018; Verdugo et al, 2019). If scientific research has documented expressive and communicative features of pianists’ trunk motion (Thompson and Luck, 2012; Massie-Laberge et al, 2019), there is currently a lack of empirical evidence assessing the role of trunk motion in pianists’ sound production and injury prevention strategies

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call