Abstract
Activin and Vg1, two members of the TGF-beta family, are believed to play roles in mesoderm induction and axis formation in the amphibian embryo. Both molecules are provided maternally, either as protein (activin) or as RNA and protein (Vg1), and experiments with a truncated form of a type IIB activin receptor have led to the conclusion that activin is required for induction of mesoderm in vivo. In this paper we first show that truncated versions of two different Xenopus activin receptors also have severe effects on the activity of the mature region of Vg1, suggesting that such receptors may block the function of several members of the TGF-beta family. We go on to demonstrate that follistatin, a secreted protein which binds activin and blocks its activity, does not interfere with Vg1 signalling. Furthermore, overexpression of follistatin mRNA in Xenopus embryos does not perturb mesoderm formation. Taken together, our data show that the effects of truncated activin receptors on Xenopus development can be explained by the inhibition of Vg1 activity, while the lack of effect of follistatin argues against a function for activin in mesoderm induction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.