Abstract

AbstractA balance of surface energies exists where grain boundaries meet the surface of a flat solid specimen. The energy balance leads to grain boundary grooving on the surface, and the establishment of the equilibrium dihedral angle. Triple junctions are defined at the intersections of three grain boundaries. Surface grooves are typically observed to be the deepest at the triple junctions. In this work, a simple model is constructed of a polycrystalline thin film using Surface Evolver numerical software. The equilibrium sur face groove depths at triple junctions are investigated as a function of triple junction line tension. Results show that line tension can affect grain boundary groove depths for grain sizes less than ∼1μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.