Abstract

Diabetes increases bone fracture risk. Trigonelline, an alkaloid with potential antidiabetic activity, is present in considerable amounts in coffee. The aim of the study was to investigate the effects of trigonelline on experimental diabetes-induced disorders in the rat skeletal system. Effects of trigonelline (50 mg/kg p.o. daily for four weeks) were investigated in three-month-old female Wistar rats, which, two weeks before the start of trigonelline administration, received streptozotocin (60 mg/kg i.p.) or streptozotocin after nicotinamide (230 mg/kg i.p.). Serum bone turnover markers, bone mineralization, and mechanical properties were studied. Streptozotocin induced diabetes, with significant worsening of bone mineralization and bone mechanical properties. Streptozotocin after nicotinamide induced slight glycemia increases in first days of experiment only, however worsening of cancellous bone mechanical properties and decreased vertebral bone mineral density (BMD) were demonstrated. Trigonelline decreased bone mineralization and tended to worsen bone mechanical properties in streptozotocin-induced diabetic rats. In nicotinamide/streptozotocin-treated rats, trigonelline significantly increased BMD and tended to improve cancellous bone strength. Trigonelline differentially affected the skeletal system of rats with streptozotocin-induced metabolic disorders, intensifying the osteoporotic changes in streptozotocin-treated rats and favorably affecting bones in the non-hyperglycemic (nicotinamide/streptozotocin-treated) rats. The results indicate that, in certain conditions, trigonelline may damage bone.

Highlights

  • IntroductionThere are two main types of diabetes: type 1 (insulin-dependent), with β-cell destruction and insulin deficiency, and type 2, with progressive defect of insulin secretion on the background of insulin resistance [1]

  • Diabetes mellitus belongs to the most prevalent chronic diseases

  • The results obtained in trigonelline-treated rats were compared with those of the appropriate control rats with streptozotocin-induced changes

Read more

Summary

Introduction

There are two main types of diabetes: type 1 (insulin-dependent), with β-cell destruction and insulin deficiency, and type 2, with progressive defect of insulin secretion on the background of insulin resistance [1]. Both type 1 and type 2 diabetes are associated with the development of numerous complications, including disorders of bone metabolism leading to increased occurrence of bone fractures [2,3]. Lifestyle and dietary factors may significantly affect the development of pathological changes in diabetes (in particular type 2 diabetes). Coffee drinking has been shown to exert numerous health-promoting

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call