Abstract

To assess whether progesterone (P) levels on the trigger day during preimplantation genetic testing (PGT) cycles are associated with embryo quality and pregnancy outcomes in the subsequent first frozen-thawed blastocyst transfer (FET) cycle. In this retrospective analysis, 504 eligible patients who underwent ICSI followed by frozen-thawed embryo transfer (FET) with preimplantation genetic test (PGT) between December 2014 and December 2019 were recruited. All patients adopted the same protocol, namely, the midluteal, short-acting, gonadotropin-releasing hormone agonist long protocol. The cutoff P values were 0.5 and 1.5 ng/ml when serum P was measured on the day of human chorionic gonadotropin (HCG) administration, and cycles were grouped according to P level on the day of HCG administration. Furthermore, the effect of trigger-day progesterone on embryo quality and the subsequent clinical outcome of FET in this PGT population was evaluated. In total, 504 PGT cycles were analyzed. There was no significant difference in the number of euploid blastocysts, top-quality blastocysts, euploidy rate, or miscarriage rate among the three groups (P>0.05). The 2PN fertilization rate (80.32% vs. 80.17% vs. 79.07%) and the top-quality blastocyst rate (8.71% vs. 8.24% vs. 7.94%) showed a downward trend with increasing P, and the between-group comparisons showed no significant differences (P>0.05). The clinical pregnancy rate (41.25% vs. 64.79%; P<0.05) and live birth rate (35.00% vs. 54.93%; P<0.05) in subsequent FET cycles were substantially lower in the high-P group than in the P ≤ 0.5 ng/ml group. After adjustments were made for confounding variables, multivariate logistic regression analysis revealed that the high-P group had a lower clinical pregnancy rate (adjusted OR, 0.317; 95% CI, 0.145-0.692; P=0.004) and live birth rate (adjusted OR, 0.352; 95% CI, 0.160-0.773; P=0.009) than the low-P group in subsequent FET cycles, and the differences were significant. This study demonstrates that in the PGT population, elevated P on the trigger day may diminish the top-quality blastocyst rate (although there is no difference in the euploidy rate). Trigger-day P is an important factor influencing clinical outcomes in subsequent FET cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call