Abstract

As an emerging flame retardant, organic phosphate flame retardants have been extensively used worldwide. The aim of this study is to determine the effects of TnBP on neurobehavior of Caenorhabditis elegans (C. elegans) and its mechanisms. L1 larvae of wild-type nematodes (N2) were exposed to TnBP of 0, 0.1, 1, 10, and 20 mg/L for 72 hours. Then, we observed that the body length and body width were inhibited, the head swings were increased, the pump contractions and chemical trend index were reduced, the production of reactive oxygen species (ROS) was increased, and the expression of mitochondrial oxidative stress related genes (mev-1 and gas-1) and P38 MAPK signal pathway-related genes (pmk-1, sek-1, and nsy-1) was altered. After reporter gene strains BZ555, DA1240, and EG1285 were exposed to TnBP of 0, 0.1, 1, 10, and 20 mg/L for 72 hours, the synthesis of dopamine, glutamate, and Gamma-Amino Butyric Acid (GABA) was increased. In addition, the pmk-1 mutants (KU25) led to the sensitivity of C. elegans to TnBP in terms of head swings. The results showed that TnBP had harmful effects on the neurobehavior of C. elegans, oxidative stress might be one of the mechanisms of its neurotoxicity, and P38 MAPK signal pathway might play an important regulatory role in this process. The results revealed the potential adverse effects of TnBP on the neurobehavior of C. elegans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.