Abstract

Leaf litters from beech ( Fagus orientalis Lipsky.) and oak ( Quercus robur L.), and needle litters from fir ( Abies nordmanniana Spach.) and pine ( Pinus sylvestris L.) trees were collected from north-facing site and south-facing site and at three slope positions (top, middle and bottom) on each aspect that varied in soil chemical characteristics (soil pH, cation exchange capacity and base saturation). The litters were analysed for initial total carbon, nitrogen, acid detergent fibre, lignin and cellulose concentrations. Nitrogen, acid detergent fibre and lignin concentrations and carbon:nitrogen and lignin:nitrogen ratios varied significantly within and between species according to soil chemical characteristics on aspects and slope positions. Litter decomposition was studied in the field using the litterbag technique. The litters were placed on two aspects and at three slopes on each aspect in October 2001, and were sampled every 6-month for 2 years. The main effects of aspect, species and slope position on decomposition rates were all statistically significant. Oak leaf litter showed highest decomposition rates, followed by pine, fir and beech litter, and the litters placed on north-facing site decomposed faster than those on the south-facing site. The litters placed at the top slope position decomposed slower than at those at either the bottom or middle positions. Initial lignin concentrations explained most of the variation in decomposition rates between species, and within species for the aspects and the slope positions, but the explained variance showed differences between aspects and slope positions. This result illustrates the important point that litter quality may define the potential rates of microbial decomposition but these are significantly influenced by the biotic and abiotic environment in which decomposition takes place.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.