Abstract

Oxidative stress and inflammation play important roles in the progression from simple fatty liver to non-alcoholic steatohepatitis (NASH). The aim of this work was to investigate whether treatment with hydrogen sulfide (H2 S) prevented NASH in rats through abating oxidative stress and suppressing inflammation. A methionine-choline-deficient (MCD) diet rat model was prepared. Rats were divided into three experimental groups and fed for 8 weeks as follows: (i) control rats; (ii) MCD-diet-fed rats; (iii) MCD-diet-fed rats treated with NaHS (intraperitoneal injection of 0.1 mL/kg/day of 0.28 mol/L NaHS, a donor of H2 S). MCD diet impaired hepatic H2 S biosynthesis in rats. Treatment with H2 S prevented MCD-diet-induced NASH, as evidenced by hematoxylin and eosin staining, reduced apoptosis and activities of alanine aminotransferase and aspartate aminotransferase, and attenuated hepatic fat accumulation in rats. Treatment with H2 S abated MCD-diet-induced oxidative stress through reducing cytochrome p4502E1 expression, enhancing heme oxygenase-1 expression, and suppressing mitochondrial reactive oxygen species formation, and suppressed MCD-diet-induced inflammation through suppressing activated nuclear factor κB signaling and reducing interleukin-6 and tumor necrosis factor α expressions. In addition, treatment of MCD-diet fed rats with H2 S had a beneficial modulation on expression profiles of fatty acid metabolism genes in livers. Treatment with H2 S prevented NASH induced by MCD diet in rats possibly through abating oxidative stress and suppressing inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call