Abstract

Antimony (Sb) is a non-essential metalloid that can be taken up by plants from contaminated soils and thus enter the food chain and threaten human health. Boehmeria nivea L. (ramie) is a promising phytoremediation plant for Sb-polluted soils. However, the mechanisms of antimonite (SbIII) and antimonate (SbV) uptake by ramie remain unclear. In this study, a hydroponic system was established to investigate how different substances affect the uptake of SbIII or SbV by ramie, including an energy inhibitor (malonic acid), an aquaglyceroporin inhibitor (silver nitrate), an SbV analog (phosphate-PV), and SbIII analogs (arsenite-AsIII, glycerol, silicic acid-Si, and glucose). The results indicated that ramie primarily transported Sb by increasing the Sb concentration in the bleeding sap, rather than increasing the weight of the bleeding sap. After 16 h of Sb exposure, the absolute amount of transported Sb from the roots to the aboveground parts was 1.90 times higher under SbIII than under SbV. The addition of malonic acid significantly inhibited the uptake of SbV but had limited effects on SbIII, indicating that SbV uptake was energy dependent. PV addition significantly reduced SbV uptake, while the addition of AsIII, glycerol, and Si obviously inhibited SbIII uptake. This suggested that the uptake of SbV might be via low-affinity P transporters and SbIII might use aquaglyceroporins. These findings deepen the understanding of Sb uptake pathways in ramie, contribute to a better comprehension of Sb toxicity mechanisms in ramie, and establish a foundation for identifying the most effective Sb uptake pathways, which could further improve the efficiency of phytoremediation of Sb-polluted soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call