Abstract

BackgroundTransmission-blocking vaccine (TBV) is a promising strategy for interrupting the malaria transmission cycle. Current TBV candidates include both pre- and post-fertilization antigens expressed during sexual development of the malaria parasites.MethodsWe tested whether a TBV design combining two sexual-stage antigens has better transmission-blocking activity. Using the rodent malaria model Plasmodium yoelii, we pursued a DNA vaccination strategy with genes encoding the gametocyte antigen Pys48/45 and the major ookinete surface protein Pys25.ResultsImmunization of mice with DNA constructs expression either Pys48/45 or Pys25 elicited strong antibody responses, which specifically recognized a ~45 and ~25 kDa protein from gametocyte and ookinete lysates, respectively. Immune sera from mice immunized with DNA constructs expressing Pys48/45 and Pys25 individually and in combination displayed evident transmission-blocking activity in in vitro ookinete culture and direct mosquito feeding experiments. With both assays, the Pys25 sera had higher transmission-blocking activity than the Pys48/45 sera. Intriguingly, compared with the immunization with the individual DNA vaccines, immunization with both DNA constructs produced lower antibody responses against individual antigens. The resultant immune sera from the composite vaccination had significantly lower transmission-blocking activity than those from Pys25 DNA immunization group, albeit the activity was substantially higher than that from the Pys48 DNA vaccination group.ConclusionsThis result suggested that vaccination with the two DNA constructs did not achieve a synergistic effect, but rather caused interference in inducing antigen-specific antibody responses. This result has important implications for future design of composite vaccines targeting different sexual antigens.

Highlights

  • Transmission-blocking vaccine (TBV) is a promising strategy for interrupting the malaria transmission cycle

  • To test whether a combination vaccine targeting both pre- and postfertilization antigens would perform better, we tested the combination of Pys48/45 and Pys25 using the rodent malaria parasite P. yoelii as a model

  • DNA vaccine constructs were used in order to circumvent difficulties associated with producing correctly folded recombinant proteins of the two Cys-motif proteins Pys48/45 and Pys25 in prokaryotic expression systems

Read more

Summary

Introduction

Transmission-blocking vaccine (TBV) is a promising strategy for interrupting the malaria transmission cycle. Current TBV candidates include both pre- and post-fertilization antigens expressed during sexual development of the malaria parasites. Current tools for combating malaria include vector control with insecticides and artemisinin-based combination therapies [2, 3]. The emergence and spread of drug-resistant parasites over the last four decades, especially with the recent detection of resistance against the front-line treatment artemisinins, highlight the necessity for new control strategies. In this regard, the development of a safe and effective antimalarial vaccine is expected to play an important role in integrated malaria control [4, 5]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.