Abstract

Transient receptor potential vanilloid-1 (TRPV1) channels play a role in several inflammatory and nociceptive processes. Previous work showed that magnetic electrical field-induced antinociceptive [corrected] action is mediated by activation of capsaicin-sensitive sensory afferents. In this study, a modified Hodgkin-Huxley model, in which TRP-like current (ITRP) was incorporated, was implemented to predict the firing behavior of action potentials (APs), as the model neuron was exposed to sinusoidal changes in externally-applied voltage. When model neuron is exposed to low-frequency sinusoidal voltage, increased maximal conductance of ITRP can enhance repetitive bursts of APs accompanied by a shortening of inter-spike interval (ISI) in AP firing. The change in ISIs with number of interval is periodic with the phase-locking. In addition, increased maximal conductance of ITRP can abolish chaotic pattern of AP firing in model neuron during exposure to high-frequency voltage. The ISI pattern is converted from irregular to constant, as maximal conductance of ITRP is increased under such high-frequency voltage. Our simulation results suggest that modulation of TRP-like channels functionally expressed in small-diameter peripheral sensory neurons should be an important mechanism through which it can contribute to the firing pattern of APs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.