Abstract
Effects of transient carrier transport on the performance of millimeter-wave GaAs diodes are investigated using results obtained from a Monte Carlo simulation of electron transport. Transit-time devices (such as IMPATT's and TUNNETT's) are discussed first. Mechanisms by which transient effects in the drifting charge pulse may enhance or degrade performance are identified and discussed. Attention is then focused on electron transport in the undepleted epitaxial material which will be present in mixer and varactor diodes and may be present in transit-time diodes. The frequency and signal-level dependence of the conductance of such material is calculated and the implications for device performance are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.