Abstract

We examined the analgesic properties of endomorphin-2 expressed in DRG neurons transduced with a non-replicating herpes simplex virus (HSV)-based vector containing a synthetic endomorphin-2 gene construct. HSV-mediated endomorphin-2 expression reduced nocisponsive behaviors in response to mechanical and thermal stimuli after injection of complete Freund’s adjuvant (CFA) into the paw, and reduced peripheral inflammation measured by paw swelling after injection of CFA. The analgesic effect of the vector was blocked by either intraperitoneal or intrathecal administration of naloxone methiodide, blocking peripheral and central μ opioid receptors, respectively. Endomorphin-2 vector injection also reduced spontaneous pain-related behaviors in the delayed phase of the formalin test and in both CFA and formalin models suppressed spinal c-fos expression. The magnitude of the vector-mediated analgesic effect on the delayed phase of the formalin test was similar in naïve animals and in animals with opiate tolerance induced by twice daily treatment with morphine, suggesting that there was no cross-tolerance between vector-mediated endomorphin-2 and morphine. These results suggest that transgene-mediated expression of endomorphin-2 in transduced DRG neurons in vivo acts both peripherally and centrally through mu opioid receptors to reduce pain perception.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.