Abstract

Electrical stimulation of the vagus nerve has been shown to enhance cortical plasticity and may benefit upper extremity rehabilitation following stroke. As an initial step towards assessing the potential of other craniocervical nerves as neuromodulation targets during rehabilitation, we explored the ability of non-invasive stimulation of cervical spine afferents, paired with a proprioceptive discrimination task, to improve sensory function in neurologically intact human subjects. On each trial, subjects' arms were moved by a robot from a test position, along a random path, to a judgment position located 1-4 cm away. Subjects responded 'same' if the judgment position was the same as the test or 'different' if it was not. These responses were used to compute proprioceptive sensitivity and bias. Three groups of 20 subjects received transcutaneous electric nerve stimulation to the C3/C4 cervical spine at one of three frequencies (30 Hz, 300 Hz, 3 kHz) for 10 minutes prior to task performance. A fourth group served as a sham. We found a statistically significant interaction between stimulation frequency and displacement distance on proprioceptive sensitivity. In summary, stimulation of cervical spine afferents may enhance arm proprioceptive function, though in unimpaired subjects these gains depend on both stimulation frequency and discrimination distance.Clinical Relevance- This study provides preliminary data on the potential for non-invasive stimulation of cervical spine afferents to enhance recovery of function following stroke and other neurological disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call