Abstract
BackgroundThe ability to successfully perform various physical and cognitive tasks simultaneously is a required goal for older adults (OA). Brain areas such as the dorsolateral prefrontal cortex (DLPFC) are involved in cognitive processing during walking and balance tasks, with transcranial direct current stimulation (tDCS) used in modulating the excitability of brain cortical areas such as the DLPFC. ObjectivesTo evaluate the available scientific evidence on the effects of tDCS on dual-task (DT) Performance (PF) in older and young adults. MethodsDatabases of PEDro, Web of Science, PubMed, Embase, and Cochrane Library were searched from inception until December 2023. RCTs were included. The risk of bias (ROB) and methodological quality of the included RCTs were assessed with the appropriate Cochrane ROB assessment tool, and PEDro scale respectively. Both narrative and quantitative synthesis were used for data analysis. ResultsThe result revealed that real tDCS significantly reduced: dual-task cost (DTC) on gait speed (MD = 3.68, 95 %CI-1.04 to 6.33, P = 0.006), DTC on postural sway (PS) velocity (MD = -25.49, P < 0.00001), DTC on PS area (MD = -53.96, P < 0.00001), and significantly improved DT PS velocity (SMD = -0.61, P = 0.02), with low certainty of evidence post- experiment compared to sham tDCS in OA. However, in young adults, there was no significant difference post-experiment between real and sham tDCS on DT stride time variability (P = 0.18) and DTC on stride time variability (P = 0.34) with low certainty of evidence. ConclusionstDCS especially anodal tDCS to the DLPFC significantly improved DT PS velocity and area, and also significantly reduced DTC on gait speed, PS velocity, and area in OA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.