Abstract

This study investigated the effects of trace moisture in hydrogen gas on the tribological behavior of carbon fiber (CF)-filled polytetrafluoroethylene (PTFE) composites by examining 20 wt% polyacrylonitrile-based CF-reinforced PTFE composites against stainless-steel disks in gaseous hydrogen environments, where moisture content was controlled at 1, 10, 20, and 40 ppm. The results revealed tribological characteristics of the sliding couples were significantly affected by the moisture content. Wear rates of pin specimens tended to increase gradually with moisture content. Similarly, average coefficient of friction increased as moisture content increased from 1 to 20 ppm. However, it decreased upon further increasing the water content. Moreover, surface analyses of the formed tribofilms at varying moisture contents revealed significant variations in terms of the amount and structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.