Abstract

Abstract The aim of this work was to reveal the effects of trace elements on the creep properties of nickel-iron base superalloys, which are the candidate material for the large components of the advanced-ultrasupercritical (A-USC) power generation plants. High temperature tensile and creep properties of forged samples with seven different compositions were examined. No significant differences were observed in the creep rate versus time curves of the samples, of which contents of magnesium, zirconium, manganese and sulfur were varied. In contrast, the curves of phosphorus-added samples showed very small minimum creep rates compared to the other samples. The creep rupture lives of phosphorus-added samples were obviously longer than those of the other samples. Microstructure observation in the vicinity of grain boundaries of phosphorus-added samples after aging heat treatment revealed that there were fine precipitates consisting of phosphorus and niobium at the grain boundaries. The significant suppression of the creep deformation of phosphorus-added sample may be attributed to the grain boundary strengthening caused by the fine grain boundary precipitates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.