Abstract

In this paper, we study the optical properties of asymmetric thin-shell wormholes (ATWs) under torsion charge. Utilizing the cut-and-paste method developed by Visser, we construct these wormholes and determine their key physical properties, such as the radius of the photon sphere and critical impact parameters, under different torsion charges. Furthermore, we investigate the effective potential and behavior of photon motion within the wormhole spacetime, identifying a relationship between photon trajectories and impact parameters. The study focuses on scenarios where thin accretion disks act as the primary light source. It reveals that the optical features of ATWs under torsion charge significantly differ from those of black holes (BHs). Notably, an increase in torsion charge leads to a reduction in the sizes of both extra photon rings and lensing bands, which serve as important markers for distinguishing and characterizing ATW spacetimes from those of BHs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.