Abstract

We investigate the effects of topological constraints in catenanes composed of interlinked ring polymers on their size in a good solvent as well as on the location of their θ-point when the solvent quality is worsened. We mainly focus on poly[n]catenanes consisting of n ring polymers each of length m interlocked in a linear fashion. Using molecular dynamics simulations, we study the scaling of the poly[n]catenane's radius of gyration in a good solvent, assuming in general that Rg∼mμnν and we find that μ = 0.65 ± 0.02 and ν = 0.60 ± 0.01 for the range of n and m considered. These findings are further rationalized with the help of a mean-field Flory-like theory yielding the values of μ = 16/25 and ν = 3/5, consistent with the numerical results. We show that individual rings within catenanes feature a surplus swelling due to the presence of NL topological links. Furthermore, we consider poly[n]catenanes in solvents of varying quality and we demonstrate that the presence of topological links leads to an increase of its θ-temperature in comparison to isolated linear and ring chains with the following ordering: T > T > T. Finally, we show that the presence of links similarly raises the θ-temperature of a single linked ring in comparison to an unlinked one, bringing its θ-temperature close to the one of a poly[n]catenane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.