Abstract

Photocatalysts have attracted attention in the medical field for their antibacterial effects. However, typical photocatalysts are activated by ultraviolet rays, which may have adverse effects. Therefore, we focused on a new photocatalyst that is activated by visible light, hydroxyapatite (HAp), and amino acid complex with gray titania, and evaluated its antibacterial effects against Porphyromonas gingivalis and effect by toothbrushing. The test sample was a titanium alloy substrate, and four surface treatments were applied: (1) substrate only, (2) substrate with HAp complex, (3) substrate with HAp complex with gray titania, and (4) HAp-tryptophan complex with gray titania (TR). These surface treatments were evaluated with or without toothbrushing (8 total groups). Surface roughness (Sa), fluorescent X-ray analysis (XRF), and scanning electron microscopy (SEM) were used to evaluate surface properties. To investigate antibacterial effects, each sample was seeded with P. gingivalis, irradiated with red light, and total viable bacterial count was determined. For Sa measurement, TR showed no significant difference after toothbrushing. However, in XRF and SEM observation, TR exhibited peeling of the applied coating after toothbrushing. In the antibacterial test, TR showed a decrease in P. gingivalis under no toothbrushing condition. Conversely, with toothbrushing, the TR coating appeared to peel. However, no significant difference in P. gingivalis count was observed among all groups. HAp-tryptophan complex with gray titania coating showed an antibacterial effect against P. gingivalis when irradiated with visible light. However, toothbrushing can result in coat peeling and consequently reduce the antibacterial effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.