Abstract

Gears are significant machine elements used in various industrial applications. An undetected fault in a gear transmission system may lead to a fatal breakdown and, thus, severe economic losses or even human casualties. From this standpoint, the present study developed a numerical method to detect root crack damages in symmetric and asymmetric involute spur gears. To achieve this end, the single tooth stiffness values were calculated for healthy and cracked (25%-50%-75%-100%) gears, and then the time-varying mesh stiffness was obtained. A six-degree-of-freedom dynamic model of a single-stage gear mechanism was developed to collect vibration and Dynamic Transmission Error (DTE) signals. The efficacy of vibration and DTE responses in fault detection was compared through six statistical indicators. The results indicate that the vibration signals were more effective than DTE in detecting tooth root cracks. It was observed that the statistical indicator changes significantly increase with the increment of the drive side pressure angle from 20° to 30° for the backup ratios where the root crack propagates along the tooth, thus making fault detection easier. The findings could provide significant outputs for a better understanding of the influence of tooth asymmetry on gear dynamics characteristics and early fault diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call