Abstract

Technical reasoning refers to making inferences about how to use tools. The degree of technical reasoning is indicated by the bias of the gaze (fixation) on the functional part of the tool when in use. Few studies have examined whether technical reasoning differs between familiar and unfamiliar novel tools. In addition, what effect the intention to use the tool has on technical reasoning has not been determined. This study examined gaze shifts in relation to familiar or unfamiliar tools, under three conditions (free viewing, lift, and use), among 14 healthy adults (mean age ± standard deviation, 29.4 ± 3.9 years). The cumulative fixation time on the functional part of the tool served as a quantitative indicator of the degree of technical reasoning. The two-way analysis of variance for tools (familiar and unfamiliar) and conditions (free viewing, lift, and use) revealed that the cumulative fixation time significantly increased under free viewing and use conditions, compared to lift conditions. Relative to the free viewing condition, cumulative fixation time for unfamiliar tools significantly decreased in the lift condition and significantly increased in the use condition. Importantly, the results showed that technical reasoning was performed in both the use and the free viewing conditions. However, technical reasoning in the free viewing condition was not as strong as in the use condition. The difference between technical reasoning in free viewing and use conditions may indicate the difference between automatic and intentional technical reasoning.

Highlights

  • Humans live in environments surrounded by a variety of tools

  • Region of Interest Area of the Functional Part There was no significant difference in the region of interest (ROI) area of the functional part between familiar and unfamiliar tools (P = 0.3575)

  • This was not found to be the case when the subject was asked to lift the tool, regardless of familiarity, namely, this result indicates that, similar to what happened in a prior study (Myachykov et al, 2013), the intention to lift caused participants to prioritize looking at the grasping part – an action meant to infer the lifting of the tool – over its functional part – an action meant to infer tool use

Read more

Summary

Introduction

Humans live in environments surrounded by a variety of tools. In both daily (e.g., eating, cooking, and grooming) and occupational activities, tools are selected according to the intended use or the activity to be performed. Two reasoning systems are required when using such tools; the first system is semantic reasoning, which concerns itself with what to do, based on the functional knowledge of the tool (Osiurak, 2014); the second is technical reasoning, which is the ability to solve physical problems, especially regarding tool use, based on abstract physical principles. Technical reasoning ability is important when dealing with a novel tool, which has an unknown function or when employing a tool for something beyond its standard use (e.g., stirring coffee with a butter knife) (Osiurak et al, 2009; Osiurak, 2014)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.