Abstract
In this study we compared the effects of the Toll-like receptor (TLR) ligands lipopolysaccharide (LPS), flagellin, the synthetic bacterial triacylated lipopeptide Pam3-Cys-Ser-Lys4 (Pam3CSK4), Polyinosinic:polycytidylic acid (Poly I:C), and macrophage-activating lipopeptide (MALP-2), which are TLR4, TLR5, TLR1/2, TLR3, and TLR2/6 agonists, respectively, on cell morphology and phagocytosis of zymosan particles, derived from Saccharomyces cerevisiae, and rich in fungal PAMPs including beta-glucan, mannose, and chitin. LPS, Pam3CSK4, and MALP-2 induced an activated macrophage phenotype and enhanced zymosan phagocytosis. In contrast, flagellin and Poly I:C, respectively, had little effect on cell morphology and phagocytosis. We examined the role of scavenger receptor A (SR-A) on zymosan phagocytosis. Cells cultured in medium alone expressed SR-A, and LPS induced further expression of the receptor. We also observed inhibitory effects of scavenger receptor antagonists fucoidan, dextran sulphate, and Polyinosinic (Poly I), respectively, on zymosan phagocytosis of cells in medium alone and those pre-treated with LPS. We conclude that exposure to specific TLR ligands impacts both cellular morphology and phagocytic capacity, and that scavenger receptors contribute to zymosan ingestion as well as LPS-induced augmentation of phagocytosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.