Abstract

Limited-angle data, such as data obtained from a dual-panel Breast-PET scanner, result in substantial image blur in directions coinciding with the missing cone of the image spectrum. On systems with time-of-flight (TOF) capabilities, this blur is reduced as given by the TOF uncertainty, with the image spectrum being correspondingly expanded into the missing spectral cone. Modeling of the TOF uncertainty in the reconstruction is expected to deconvolve this residual TOF blurring. We have however observed that, as a tradeoff, this TOF de-blurring process also introduces ringing artifacts at the edges, analogous to the edge effects observed with line-of-response (LOR) resolution modeling, which attempts to deconvolve the blur due to detector resolution effects. However, in the former case, the ringing artifacts are much wider due to the spatial extent of the TOF uncertainty as compared to the width of typical LOR resolution blur. We illustrate and investigate the effects of using matched, as well as under-modeled and over-modeled, TOF kernels on edge artifacts in reconstruction from limited-angle data, and compare them with TOF reconstructions of complete data. Although for the conventional data with full angular coverage the reconstruction is fairly insensitive to the exact size of the TOF kernel and TOF modeling does not produce ringing artifacts, it is not the case for the limited-angle data. We show that it is important to use some form of regularization of the TOF uncertainty deconvolution process within reconstruction of the limited-angle data, such as decreasing the TOF kernel size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call