Abstract

BackgroundAssociative data and some controlled studies suggest that the inflammatory cytokine tumor necrosis factor (TNF) α can induce fatty liver in dairy cattle. However, research demonstrating that TNFα is a necessary component in the etiology of bovine fatty liver is lacking. The aim of this work was to evaluate whether blocking TNFα signaling with a synthetic cyclic peptide (TNF receptor loop peptide; TRLP) would improve liver metabolic function and reduce triglyceride accumulation during feed restriction.ResultsCapability of TRLP to inhibit TNFα signaling was confirmed on primary bovine hepatocytes treated with recombinant bovine TNFα and 4 doses of TRLP (0, 1, 10, 50 μmol/L) over 24 h. Next, 4 lactating Holstein cows (parity 1.4 ± 0.5, 433 ± 131 d in milk) in an incomplete Latin rectangle design (3 × 2) were subcutaneously administered with different TRLP doses (0, 1.5, 3.0 mg/kg BW) every 4 h for 24 h, followed by an intravenous injection of TNFα (5 μg/kg BW). Before and for 2 h after TNFα injection, TRLP decreased plasma non-esterified fatty acid (NEFA) concentration (P ≤ 0.05), suggesting an altered metabolic response to inflammation. Finally, 10 non-pregnant, non-lactating Holstein cows (3.9 ± 1.1 yr of age) were randomly assigned to treatments: control (carrier: 57% DMSO in PBS) or TRLP (1.75 mg TRLP /kg BW per day). Treatments were administrated every 4 h for 7 d by subcutaneous injection to feed-restricted cows fed 30% of maintenance energy requirements. Daily blood samples were analyzed for glucose, insulin, β-hydroxybutyrate, NEFA, and haptoglobin concentrations, with no treatment effects detected. On d 7, cows completed a glucose tolerance test (GTT) by i.v. administration of a dextrose bolus (300 mg glucose/kg BW). Glucose, insulin, and NEFA responses failed to demonstrate any significant effect of treatment during the GTT. However, plasma and liver analyses were not indicative of dramatic lipolysis or hepatic lipidosis, suggesting that the feed restriction protocol failed to induce the metabolic state of interest. Injection site inflammation, assessed by a scorer blinded to treatment, was enhanced by TRLP compared to control.ConclusionsAlthough the TRLP inhibited bovine TNFα signaling and altered responses to i.v. administration of TNFα, repeated use over 7 d caused apparent local allergic responses and it failed to alter metabolism during a feed restriction-induced negative energy balance. Although responses to feed restriction seemed atypical in this study, side effects of TRLP argue against its future use as a tool for investigating the role of inflammation in metabolic impacts of negative energy balance.

Highlights

  • Associative data and some controlled studies suggest that the inflammatory cytokine tumor necrosis factor (TNF) α can induce fatty liver in dairy cattle

  • Experiment 2 In vivo studies performed in rodents confirmed that TNF receptor loop peptide (TRLP) has an inhibitory effect on TNFα-mediated inflammatory response [11, 13, 17], and we modeled our doses after these studies

  • Dose response experiments demonstrated that TRLP can block the cytotoxic effect of bovine TNFα in vitro and can attenuate the lipolytic effect of TNFα in cows

Read more

Summary

Introduction

Associative data and some controlled studies suggest that the inflammatory cytokine tumor necrosis factor (TNF) α can induce fatty liver in dairy cattle. The aim of this work was to evaluate whether blocking TNFα signaling with a synthetic cyclic peptide (TNF receptor loop peptide; TRLP) would improve liver metabolic function and reduce triglyceride accumulation during feed restriction. The proinflammatory cytokine tumor necrosis factor alpha (TNFα) has been implicated in several metabolic disorders, including fatty liver disease and insulin resistance in dairy cattle [1, 2]. Our laboratory has conducted several studies to confirm that TNFα-induced inflammation alters metabolic function in dairy cows. If TNFα does not bind to its receptors, activation of inflammatory pathways involved in alteration of organ function does not take place. The inability of TNFα to trigger signaling downstream of its receptor abrogates most of its effects

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call