Abstract

The effects of Tm3+ concentration on upconversion emission and temperature-sensing behavior of Tm3+/Yb3+:Y2O3 nanocrystals were investigated. Blue and red emissions were observed under 980nm excitation. Both upconversion emissions and the blue to red intensity ratio were found to decrease with increasing Tm3+ concentration. The temperature-sensing performances of the samples were studied, the fluorescence intensity ratio of 1G4(a)→3H6 (477nm) and 1G4(b)→3H6 (490nm) transitions from Tm3+ ions was chosen as the thermometric index. The results showed that the sensor sensitivity was sensitive to Tm3+ ion concentration. The maximum sensitivity of ~32×10-4K-1 was obtained for 0.1%Tm3+/5%Yb3+:Y2O3 nanocrystals at 344K. Moreover, a marked optical induced heating effect was also found in the nanocrystals. The prepared Tm3+/Yb3+:Y2O3 nanocrystals could be used in temperature-sensing probes and in optical heaters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.