Abstract
Dynamic force spectroscopy (DFS) has become a well-established method for characterizing bond strength, yet may also be useful for examining more complex phenomena such as dynamic processes or multiple reaction pathways. Here, we analyze the case where contact between an atomic force microscopy (AFM) tip and the sample induces sample reorganization during testing. Surface contact often causes molecular rearrangement in soft materials, which could also result in an altered reaction energy landscape. We model this situation by allowing the energy barrier position and magnitude to be time-dependent functions with a characteristic time scale τ . We find dynamic energy barriers result in two linear regimes with a dramatic transition near t=τ in the DFS analysis. The sharp transition region is a hallmark of a moving energy barrier and indicates the time scale of reorganization. These results illustrate that DFS may be useful to monitor dynamic transitions and also highlight the importance of extending the loading rate range used in DFS studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.