Abstract

The effects of tip-gap size on the tip-leakage vortical structures and velocity and pressure fields are investigated using large-eddy simulation, with the objective of providing guidelines for controlling tip-leakage cavitation and viscous losses associated with the tip-leakage flow. The effects of tip-gap size on the generation and evolution of the end-wall vortical structures are discussed by investigating their evolutionary trajectories and the mean velocity field. The tip-leakage jet and tip-leakage vortex are found to produce significant mean velocity gradients, leading to the production of vorticity and turbulent kinetic energy. Inside the cascade passage, the peak streamwise velocity deficit and magnitudes of vorticity and turbulent kinetic energy in the tip-leakage vortex are reduced as the tip-gap size decreases. The present analysis indicates that the mechanisms for the generation of vorticity and turbulent kinetic energy are mostly unchanged by the tip-gap size variation. However, larger tip-gap sizes are found to be more inductive to tip-leakage cavitation judged by the levels of negative mean pressure and pressure fluctuations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call