Abstract

There is a lack of thermophysical data of heat transfer oil and nano-oil in the high temperature range of 50–300°C for designing and developing heat transfer oil furnace and its heating systems. In the present study, the thermal conductivity values of heat transfer oil and TiO2 nano-oil in the above high temperature range were measured by a newly developed high-temperature thermal conductivity meter. Based on the principle of least square method, the thermal conductivity values obtained from experiments were fitted separately, and the correlation between thermal conductivity and temperature of heat transfer oil and TiO2 nano-oil was obtained. The results show that the thermal conductivity and the increased percentage of thermal conductivity of TiO2 nano-oil are proportional to the increase of particle size and mass fraction of nanoparticles, but thermal conductivity is in reverse proportion to the increase of temperature and the increased percentage of thermal conductivity is less affected by temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.